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A shell-model version of Kraichnan®hys. Rev. Lett72, 1016(1994] passive scalar problem is intro-
duced which is inspired by the model of Jensen, Paladin, and Vuli#yis. Rev. A45, 7214(1992]. As in
the original problem, the prescribed random velocity field is Gaussiandarmtrelated in time, and has a
power-law spectrunxk ¢, wherek, is the wave number. Deterministic differential equations for second- and
fourth-order moments are obtained and then solved numerically. The second-order structure function of the
passive scalar has normal scaling, while the fourth-order structure function has anomalous sca.ﬁﬁé.tﬁer
anomalous scaling exponerdjsare determined for structure functions uppte 16 by Monte Carlo simulations
of the random shell model, using a stochastic differential equation scheme, validated by comparison with the
results obtained for the second- and fourth-order structure func{i8t663-651X96)13510-§

PACS numbes): 47.27—i

[. INTRODUCTION equations, in the limit of high Reynolds number, which de-
scribes the time evolution of a fully developed turbulent ve-
A most striking property of a passive scalar quantity ad-locity field.
vected by a fully developed turbulent flow is its spatiotem- Due to the lack of knowledge about the statistical proper-
poral intermittent behavioisee Ref[1] for a recent review  ties of a fully developed turbulent flow the “full problem”
The time evolution of the scalar field is described by the cannot yet be attacked. Nevertheless, Eg, with a pre-

partial differential equation scribed velocity field of suitable statistical properties, could
be a good “training ground” for understanding general
OO+ (v-V)o=kAO+T, (1) mechanismgif any) underlying the presence of anomalous

scaling in fluid dynamics.

Recently, much attention has been paid in this direction
by studying the intermittency properties of a passive scalar
advected by a velocity field which is Gaussiagorrelated
n time, and which has self-similar spatial correlations. In

wherev is the advecting velocity fieldk is the molecular
diffusivity, and f is an external forcing.

Intermittency in passive scalars advected by highly cha
otic flows is thought to be connected to the existence o
zﬂ;ﬁi;nciﬁgsrocesses transferring fluctuations from large t‘hefs.[4—11] the two-point velocity-field correlation function

Self-similarity is_observed in the power-law behavior of was fet to(vi(x,t)vj(x ’tﬁ)_>_ at t. )D”(.X X, WIFh
structure functionsS,(r) in the inertial range; that is, mo- D(x)=D(0)—D(x). Here,D is thed-dimensional velocity-
ments of@ increments at scales where neither external forcli€ld structure function
ing nor molefular damping are acting Dij(x)zDo|x|§[(d—1+§) 5 —§Xixj|X|’2], 3)

Sp(r)=(|6(x) = B(x+1)[P)~r. ¥ . _

where the scaling exponetof the second-order velocity

The set of scaling exponents fully characterizes intermit-  structure function,& with 0<¢<2, is a free parameter.

tency. In particular, deviations from the dimensioflaiear Higher-order velocity-field correlation functions are fixed by

behavior{,,=p{, are evidence of a nontrivial scalar trans- the Gaussian assumption.

fer among scales, in analogy to the energy intermittent cas- Such a choice is far from being realistic because of the

cade in turbulent flowgsee Ref[2] for a recent review on assumed fast-time decorrelation and Gaussianity. Therefore,

this subjeck no gquantitative agreement with the intermittent properties of

Another important issue is connected to the questionethe “full problem” must be expected. Nevertheless, in Refs.
universal character of scalar fluctuations in the inertial rangd4-7, 9, 10, 12many interesting analytical and phenomeno-
Universality should be the consequence of local, or quasilological results for this toy model have been obtained, giving
cal, interactions among scales, and it should be reflected inthe impression that some additional new insight into the “in-
strong robustness of the scaling exponefitegainst varia-  termittency problem” has been gainesee Ref[13] for re-
tion of forcing and/or dissipation mechanisms. This idealated results in a passive vector case
dates back to the phenomenological work of Obukhov and The big advantage of this toy model is that, due to éhe
Corrsin[3]. correlation in time, all equations for equal-timepoint cor-

Statistics of the passive scalar must be strongly related teelations are formally closed, that is, theh-order correla-
the properties of the advecting velocity fields; therefore, theion depends only on lower-order correlations. This fact was
only realistic case would be to study the “full problem” stressed by Kraichndd,14], who gave closed expression for
given by (1) together with the corresponding Navier-StokesS,(r). In Ref. [4] a theory for all structure functions was

1063-651X/96/5¢6)/49828)/$10.00 54 4982 © 1996 The American Physical Society



54 ANOMALOUS SCALING IN RANDOM SHELL MODELS. .. 4983

proposed, and an explicit formula fdf, given. The main  going to present our numerical and analytical results ob-
physical outcome was that all structure functions of ordeitained in a weakly modified version of the shell model de-
greater than 2 have intermittency corrections, and that interfined in Ref.[23], but using as-correlated surrogate for the

mittency is connected to some nontrivial matching betweerfdvecting velocity field. The main drawback of our model is

advective and diffusive properties of the model. Indeed, fothat following shell-model philosophy, it retains only
structure functions of order greater than 2, it is no Ionger_nearest— and next-nearest-neighbor interactions in the shell

ossible to clearly separate the contributions from diffusionmdex' Having only semilocal interaction in Fourier space
P Y S€ep could be a problem for describing the physics of passive

and advection terms in the generation of anomalous scalingyctations for those types of velocity-field correlations
In Refs.[5, 7, 9 it was shown that intermittency of the \hich induce strong nonlocal effects. For example, simple
scalar structure functions is connected to properties of thgimensional considerations tell us that the limit of very small
null space of the linear operators describing the inertial-scal¢ should be dominated by strong nonlocal effettghich
evolution of multipoint passive scalar moments. Moreoverleads to an ultraviolet divergence of the eddy diffusivity in
perturbative expressions of intermittency corrections, as &he limit &—~0[5]). Therefore we do not expect that our shell
function of the parametef and as a function of the inverse model could properly mimic the physics of the partial differ-
of the dimensionality of the system, were givE®7,d. In ential equationPDE) (1) in the range of parameters choice
both cases careful analysis of matching conditions at infrared<¢<1. We are quite confident that our model captures very

(IR) and ultraviolet(UV) scales must be taken into account. well _the passive _scalar physics fér:o(l); that IS, when
dominant interactions become more local in Fourier space, as

Universalit_y in the scaling exponents is St.i” preserved, Wh"eis the case for true turbulen¢24]. The major advantage of
constants in front of the power laws acquire dependencies Ofsing 4 shell model is that, now, reliable numerical simula-
the forcing and on the passive scalar dissipation. How far alfions hecome feasible, allowing nonperturbative determina-

these results can be freely extended to the “full problem” iStionS of Sca”ng exponents up to h|gh ordérsthis paper we
difficult to say. Certainly, the scaling exponents have apresent results up to order )L&urthermore, having reliable
strong quantitative dependence on the statistical properties olumerical simulations should open the possibility of relaxing
the prescribed velocity field. Influence of a short but nonzerssome of the constraints put on the statistical properties of the
correlation time was studied in Reff8] and found to be velo_cit_y field, thereby allowing investigation of increasingly
important, while from a phenomenological point of view it is realistic problems. _
difficult to say if the perturbation expansion of Rg5] can We founq that our shell model shares many properties
be extended up to the valua=2 which mimics the spatial with the original SDE(1). Among them, the most important

energy spectrum of true turbulendeet us notice that, even are that(i) the second-order structure function has normal
gy2 P R P scaling, (ii) all structure functions of orders larger than 2
for £é=3%, the assumed correlation in time for the velocity

- i ; i have anomalous corrections, afiil) there is a remarkable
makes the classical Obukhov-Corrsin theory inapplicable {Qoupling between both UV and IR scales with inertial terms
the passive scalar two-point correlation funct{d4].) in the closed equation satisfied by fourth-order shell correla-

An important drawback of the Gaussi#correlated toy tions. This result suggests that the anomalous scaling is due
model is that numerical simulations seem even more difficulto nontrivial contributions of integral and diffusive scales on
than a direct numerical simulation of the “full problem.” the inertial-range properties. Moreover, we find that anoma-
This is becausd1) is a stochastic differential equations lous behavior tends to vanish when approaching the laminar
(SDE) the solution of which requires huge computer re-regime,¢=2, for the advecting velocity field.

sources, because of the massive use of random number gen-EVen though we have not obtained an analytical expres-
on for the anomalous scaling exponents, we are confident

irp . . |
erators and also because of the paramount difficulties in th?hat many useful insights can be obtained by further investi-

|mﬁlementat|onh of hlgh;arh than p;st—order d'.Scﬁet!zat'Iongation of the present model, or an even simpler one. For
schemeg15]. The state of the art of SDE numerical simula- gy ample, it should be possible to define some exactly solv-

tions is hardly compatible with the high spatial resolution gpje models, where the shell-velocity correlations are chosen
needed to study scaling properties of the solutiolpfvith  such as to give exactly solvableut nontrivia) linear opera-
a o-correlated in-time velocity fieldsee, however, Ref6]  tors describing the structure functions-inertial properties.
for an attempt at overcoming these difficulties, albeit at the The paper is organized as follows: in Sec. Il we introduce
price of introducing some anisotropy into the velocity field the random passive scalar shell model, and we discuss some
In this spirit, we have tried to work with the simplest toy problems connected with its stochastic differential equation
model which has some connection to the physics of the “full(SDE) formulation. In Sec. Il we explicitly derive the closed
problem,” while at the same time aiming for something deterministic equations for second- and fourth-order mo-
more tractable analytically and/or numerically. We have thugnents, which are numerically solved in Sec. IV to obtain the
investigated the intermittency properties of a shell model foscaling exponents of second- and fourth-order structure func-
a passive scalar advected by a prescribed stochastic veloc@"s- Monte Carlo simulations of the SDE are presented in
field. Shell modelg¢see Ref[16] for a pedagogical introduc- S€c. V. Concluding remarks and suggestions for further
tion) have already been successful in helping to understanfyork are given in Sec. VI.
many issues connected to fully developed turbulefice-
22].
The problem of defining a shell model for the advection
of a passive scalar by a deterministic and chaotic velocity We recall the main features of the passive scalar shell
field has been already investigated in H@8]. Here we are  model of Ref[23]. The model is defined in terms of a shell

Il. THE MODEL AND ITS STOCHASTIC DIFFERENTIAL
EQUATION FORMULATION
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discretization of the Fourier space in a set of wave numbers

defined on a geometric progressikn=k,2". Passive incre-
ments at scale,=k,, ! are described by a complex variable
6,(t). The time evolution is obtained according to the fol-
lowing criteria: (i) the linear term is a purely diffusive term
given by —«k26,; (i) the advection term is a combination
of the formk,0,,u,; (iii) interacting shells are restricted to
nearest and next-nearest neighborsipfind (iv) in the ab-

5_4
(Un(Dup(t"))=6(1—t")Dp, (6)

where
Dn=kp* @)

will be called the velocity spectrum. Fdi(t) we assume

sence of forcing and damping the model conserves the vokf(t)f(t"))=48(t—t").

ume in the phase space and the passive engergy.,| 6,|>.
Properties(i), (ii), and (iv) are also valid for the original
equation(1) in Fourier space, while propertyii) is an as-

As long as the velocity variablas,(t) have a finite cor-
relation time, and hence, smooth sample paths, there is no
particular difficulty in giving a meaning to the sé#) of

sumption of locality of interactions among modes, which israndom ordinary differential equation®©DE’s). A well-
rather well founded as long as the power-law spectra of th&nown difficulty arises with ODE’s having-correlated in-

passive scalak(k)~k™“ has Ka<3.

time coefficients: the mathematical meaning of the equation

Our passive scalar shell model, inspired by Jensen, Palds ambiguoug15]. The physicist's viewpoint, and thus our

din, and Vulpiani’'s mode[23], is defined by the following
equationgdm=1,2,..):

2
dt-l-Kkm

Om(t) =i{an[ O, 1 (DU _4(1)

— -1 (HUR4(D)]
+ b O 1 (D UR (1)
+ O 2(DUp-1(1)]
+Cnl s 2(D Uy 1 (1)

+ 0 (DU (DT S f (L), (4)

where the asterisk denotes complex conjugation and

k=2,

with u_;=uy=60_,=6,=0 as boundary conditions. The
forcing term &,,f(t) acts only on the first shell. Note that
Eq. (5) is one of possible choices for the parametgfs b,,,,

own, is to define the solution of such “stochastic differential
equations” to be the limit, as the correlation time tends to
zero, of the solution of a random ODE with nonwhitml-
ored coefficients. In the mathematical literature on stochas-
tic differential equations this is called the Stratonovich ver-
sion of stochastic calcul45]. When numerically solving a
SDE such a$4), one cannot use standard numerical methods
which assumesmoothcoefficients. It would also be highly
impractical to use a smooth approximation of the coefficients
with a small correlation time, since this requires time steps
much smaller than the correlation time. Fortunately, there is
an alternative formulation of the SDE, the Ito version, which
overcomes this difficulty. The solutions of SDE’s are Mar-
kov diffusion process which can be characterized by their
diffusion and drift coefficientgalso called Fokker-Planck
coefficienty. The so-called Ito equatiofil5] encodes this
information in a way which leads naturally to efficient nu-
merical schemes.

Let us briefly explain how this Ito equation is obtained.
For this it is better to work with an abstract form of the
starting equatiorjwith the forcing term omitted

dé

T 0. (8)

1 t
M00+;M1 ?

and Cm> ensuring the conservation of passive scalar energyere, Mg is a deterministic operator anml a random
2 mfmby, and phase-space volume. In numerical implemenGaussian operator with a finite correlation time. Thscal-

tations, the model is truncated to a finite number of shglls
(here N=19) with the additional boundary conditions
Un+1= Un+2= Ons 1= Oy 2=0.

Our model differs from that of Ref23] by the absence of
complex conjugation on two of tha factors in the right-
hand side of(4). The reason for this change will become
clear below. Furthermore, in Ref23] the passive scalar

model (4) was coupled to the Gledzer-Ohkitani-Yamada

(GQY) shell model[17-19 for the nonlinear dynamics of

ing is chosen in such away that, fer~0, the M, operator
becomess correlated in time. Just as ordinary white noise
may be written as the derivative, in the sense of distributions,
of the Brownian motion process, we can write

&)

whereW!(t) is an operator-valued Brownian motion. The Ito

] dw
lim — M, dat

e—0

C)

the velocity variables. The GOY model displays multifractal SDE associated witkB) is

behavior for theu,’s, and an interesting intermittent behav-
ior is also found for the passive scalar.

Our goal, as in Kraichnan's worfd], is to use anonin-
termittentvelocity field and then to find if the passive scalar

is nevertheless intermittent. For this, we assume that the ve-

locity variablesu,,(I) and the forcing terni(t) are indepen-
dent complex Gaussian a#torrelated and in time. Further-
more, as in Ref[14], we make a scaling assumption for the
spectrum of thau,(t)’s, namely

do=(My+D) 8 dt+dw, (10)

where

p- f " (My(9)M1(0))ds (11)
0

is called the drift operator. The presence of the drift term in
Eq. (10) is easily understood: a Neumann expansiord@f
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+dt)— 6(t) in powers ofM,, starting from Eq(8), gives a  dent of the past and, thus, éf It follows that the diffusion
second-order term, which ©®(dt?) for fixed € but becomes term has vanishing mean. Hence, the mea® sétisfies
D6 dt when the limite—0 is taken. The drift term may also

be obtained by using the Ito formuJa5] or Gaussian inte- d(6)

gration by partgsee, e.g., Ref2], Sec. 4.). The termdW ¢ ——=(My+D)(6). 12
is called the diffusion term. Since Brownian motion has in- dt

dependent increments over nonoverlapping intervals, the op-

eratordW, which isO(/dt) and has zero mean, is indepen-  The Ito SDE associated witf#) reads

dOm(t) =[(ambm+1+bBmCm-2)Dm-1+(—@8mCm-1+bBm+2Cm)Dms 1+ 8m-10mDm-—2—8m1 1CmDmi2— Kkzm] Om(t)dt
+i{am O 1 (1) am-1d W51 (1) = O 1 (1) @y 1d Wi 1 (1) T+ b 67521 (1) arm— 2d Wi, _5(1)
+ 0 o(t) am—1dW_ 1 (1) 1+ Cp[ 051 (1) @ 10 Wiy 1 () + 674 1 (D) @ o0 W o (D T 8 1 d W (D). (13)

Here a,,=k&? andD,,= ' 2/2, and theW,(t)’s and W,(t) from which closed equations can be obtained {6® 6),

are independent identically distributed complex-valued(#® 6® 6 6), etc. Such equations may also be obtained by
Brownian motion functions, normalized in such a way thatuse of Ito calculug15].

(W (1)) =(|W,(t)]?)=t. It is noteworthy that the drift In the shell-model context the moment equations become
term in Eq.(13), the top two lines on the right-hand side, excessively cumbersome beyond order 4. We have obtained
which involves the sum of the energies in the neighboringclosed equations for

and next-neighboring shells, may be viewed as an eddy-

diffusivity term. For Kraichnan’s original equatiofi), the En=(0mbr) and Piy,=(6,6] 0,67,). (15

Ito equation approach has a scale-independent eddy diffusi

ity [26]. Here, it is proportional t‘k;g_ The difference stems \ﬁ'he general structure of these equations is as follows

from the absence, in the shell model, of direct interactions EI:(_ZKkrzn(SI,m+AI,m)Em+FIv (16)
between widely separated scales. We also observe that, if we
had used the original model of R¢23] with complex con- Pin=[— 2k (k2+K2) 8. 10m+ Bimni1Pni* Gim- (17)

jugates on all thei factors, the drift operator would involve

nondiagonal elements coupling different shells, a situationrhe equations are written in explicit form in Appendix B.
we avoided. Indeed, the drift operator is the mean value 0f—|ere we stress a few important properties_ The forﬁng's
all double stochastic integrals of the stochastic Taylor expanrestricted only to the first sheth=1. The matrixA, ., is a
sion [15]. By Taylor expanding (13) and using symmetric band diagonal with a bandwidth 5, and has the
E(JodW dW =0 and E(f ,dW"dW)=t/2, the nondiago- following scaling law:
nality of the drift operator in Ref[23] is easily verified.

Alrsmis=Ks *Alm. (18)

lll. EQUATIONS FOR THE SECOND- AND Similarly,
FOURTH-ORDER MOMENTS

) . . ) . Bissmrsn+sjts™ kg_gBlm,nj . (19
In this and the following sections we are interested in the
scaling behavior of th@th-order structure functions: Straightforward scaling arguments indicate that Ed6)
and (17) may possess steady-state solutions witirmal
scaling. Such solutions have
() P2y ockey P, (14)
Emxk3 =k _¢2 (20)

where {, is called the scaling exponent of order If and

{2p=P{>, the structure functions are said to have a normal

scaling. If pop=pL—{2,#0, the scaling of the structure Pmmockr;g“, (21
function of order 9 is said to be anomalous.

It is well known that from a linear stochastic differential with {,=2¢,. In order to find what kind of scaling actually
equation with white-noise coefficients, it is possible to obtainholds, we now resort to numerical solutions of the moment
exact equations for moments of arbitrary ordl&#4,6]. For  equationg(16) and(17). Since these ardeterministicequa-
example, from the abstract equati@8) one derives the tions, they can be solved with high accuracy at relatively low
closed equation for the first-order moméh®). Higher-order  cost. This is not the case of the Monte Carlo strategy of Sec.
guantities such a8® 6,02 02 62 6,. . . also satisfy linear sto- V which allows us, however, to tackle structure functions of
chastic differential equations with white-noise coefficients,high orders.
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FIG. 1. Anomalous pai, of the fourth-order structure function
exponent vs velocity scaling exponehtvith error bars.

IV. CALCULATION OF SECOND- AND FOURTH-ORDER
STRUCTURE FUNCTIONS FROM THE MOMENT
EQUATIONS

For the numerical solution of Eq&lL6) and(17), we used

A. WIRTH AND L. BIFERALE

structure functions

I I

I I

I I

I I

I |
1.0 5.0 9.0 13.0 17.0

FIG. 2. Second-ordgcontinuous ling and fourth-ordefdashed
line) structure functions of the passive scalar calculated from the
moment equations, compared to direct numerical Monte Carlo
simulations(squares and circlgs

local Reynolds number i®(1), grows like 1£.] Even though
our shell model has only local interactions, purely kinematic
effects introduce important long-range diffusive corrections

a c19-shell truncation with values afchosen in such a way in the limit £-0. This is why we restricted our calculations
that the diffusive cutoff is well within the available range of Of p4 for & ranging from 0.2 to 2.0.

shells. An exponential cutoff was put on the velocity spec-

The fact that normal scaling is obtained for the second-

trum for shells in the dissipation range. Without cutoff in the Order structure function is not very surprising, this being ex-
velocity spectrum the passive-scalar spectrum has an alg@ctly the same situation as for Kraichnan’s original problem.
braic tail[25]. The solutions were obtained by time marching !t is easily checked that the operat®rappearing in Eq(16)
until the steady state is reached. Such a steady state is nd¥aS equipartition solutionéEy, is independent ofn) in its

essarily stable. The scaling parametewas varied in the
range 0.Z¢<2.

We found that the second-order structure functgpal-
ways displays normal scaling with

{r=2-¢, (22

the same value as obtained by Kraichniéih To investigate

null space, both for the full operator and Nsshell trunca-
tion. Such equipartition solutions have no associated passive-
scalar energy flux, and cannot bring about anomalous scal-
ing.
Let us now consider the anomalous scaling for the fourth-
order structure functions which are connected to the proper-
ties of the operatoB=B,,, ,;. The operatorB has again
equipartition solutions in its null space, which cannot cause
anomalous scaling. We have checked numerically that finite-
shell truncations oB have no other eigenvectors in their null

the nature of the scaling of the fourth-order structure funcspace. This only superficially contradicts the interpretation of
tion P.,,; we plotted it against the second-order structureanomalous scaling as arising from the zero modes of the
function, following the now standard, extended self-inertial operator describing the evolution of momelgs§ In
similarity (ESS procedurd26)]. This gave us the anomalous our case there are no anomalous zero modes of the operator
part p,=2{,— ¢, of the scaling exponent, plotted in Fig. 1 B, but still we see numerically a very clean intermittent be-
againsté. It is clearly seen that the scaling is anomaloushavior. Where does the observed anomaly come from? One
(p4>0), the anomaly is a decreasing functionéodind disap- can imagine two interpretations. The first one rests on the
pears ag—2, the “laminar” limit as in Ref.[4]. physical observation that the operat®ris naturally long

For small values og, interactions become more and more range: it mixes inertial scales with cutoffs at both the UV and
nonlocal, and a higher number of shells would be needed ttR ends. Therefore, its inverse involves a nontrivial mixture
have a sufficiently large inertial rang&.he number of shells of contributions from very different scales. This mixture
in the “intermediate inertial-dissipation range,” in which the could be the cause of anomalous scaling, thereby defeating
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FIG. 3. ESS plot of thepth-order structure function vs second- ] ]
order structure functiorip=4, 6, and 8 for £&=3. Only inertial- FIG. 4. Scaling exponentg, normallzedz by{, for structure
range shells are shown. Lines are the best linear fits. Statisticd¢nctions up to ordeip=16 (circles for {&=3. The straight line
errors are of the order of symbol sizes. represents normal scaling.

First we validated our Monte Carlo simulation by com-
naive (local) dimensional analysis. The second interpretationparison with the results for the second- and fourth-order
is to imagine that quasizero modéshich would become structure functions obtained from the moment equations in
true zero modes in the limit of an infinite inertial range the previous section. The comparison can be seen in Fig. 2.
already dominate the inverse Bf. The two interpretations The agreement of the Monte Carlo and moment-based calcu-
are not in contradiction. Indeed, our truncated system, beintations is comparable to the machine precisisimgle preci-
always influenced by UV and IR cutoffs, naturally takes intosion). We mention that, in order to maximize the extent of
account boundary conditions and therefore never shows truée inertial range and avoid an inertial-diffusive range with
zero modes. A similar scenario takes place in R&f.where  algebraic falloff of the passive scalar spectr{@6], we as-
zero modes in the infinite-dimensional function space havéumed an exponential cutoff on the velocity spectrum.
to be matched with IR and UV physical cutoffs. Let us fi- I.n.all calculaqons 19 shellsowere usged, the mqlecular dif-
nally remark that the analysis of the relevant eigenvectors ifUSivity was varied t;gtvveené and 2 and the time step
the eigenspace of the operafbis highly complicated due to P€tween 2 and 2. In order to give an example of the

the fact that we are looking at the cone of positive functions duality of the_ scaling, in_ Fig. 3 we show the_log-log plot of
which is not a linear space. the fourth, sixth, and eighth structure functions versus the

second-order structure function. This is done by ESS in order
to improve the scaling.
V. MONTE CARLO SIMULATIONS Figure 4 shows the scaling exponertsdetermined by

FOR STRUCTURE FUNCTIONS least-square fits using ESS up to orger16 for é&=3. The
error bars are obtained from the least-square fits. In all the

As we noted, the moment-equation strategy becomes imealculations the inertial range included eight shells or more.
practical for determining structure functions beyond theWhen halving the number of samples in our statistics, we
fourth order. We therefore resort to Monte Carlo simulationsfound that the values obtained remained well within the error
of the stochastic shell model in its Ito versiiB). We used bars. The graph of, appears to be linear at values pf
the “weak-order-one Euler” scheme, the details of whichbeyond 8, with a slope of about 0.29. We do not rule out that
may be found in Appendix A. Roughly, this means interpret-the asymptotic linear trend is an artifact due to insufficient
ing the Ito equation(13) as a time-difference equation. This Statistics. We observe that tifg's obtained with our Gauss-
scheme is of order (in the time stepAt) for averaged quan- 1@n &-correlated in-time velocity are less anomalous than
tities such as the structure functions. Averages are calculatdfose reported in Ref23], where the velocity was already
as time averages, assuming ergodicitye checked that Mmultifractal.
changes in the seed of the random generator do not affect the
results. Integrating over a large number of realizations is
thus equivalent to integrating over many large-eddy turnover We proposed and studied a shell model for a randomly
times. advected passive scalar. We suggest that anomalous scaling

VI. CONCLUSIONS
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of structure functions of order greater than 2 is connected ttency. For example, it is easy to extract from E4.an even
nontrivial dependence of inertial-range properties on botlsimpler shell model, by retaining only terms with
integral and diffusive scales. This is shown, for example, ingx _,(t)u,_1(t) and 6%, »(t)un.1(t) in the advecting part.
the closed equation for the fourth-order momentsThis model has the same properties as listed in Sec. I, and
(6m0,6,6 ), where inertial-range shell correlations dependsome preliminary numerical results indicate that it has simi-
explicitly on correlations between distant shells with<|. lar intermittency corrections.
The main advantage of our model is that reliable numerical Let us finally remark that, up to now, all existing work on
simulations become feasible. We numerically estimatecanomalies driven by a stochastic velocity field has been
anomalous exponents for structure functions up to order 16poted in some kind of analysis performed in tpbleysical
and for various scaling exponengsof the velocity field space In contrast, our shell model exists only in a kind of
(0.2<¢£<2). Comparing our numerical results with those ob- Fourier space Understanding the anomalous scaling in our
tained in a similar passive shell modeR], but advected by shell model at a phenomenological level could help in devis-
a multifractal velocity field, we find large quantitative differ- ing a phenomenology of intermittency. For example, ideas
ences. This is due to the obvious fact that th&tatistics are  connected to the popular inertial-range cascade picture could
strongly correlated to the statistics of the advecting fieldbe usefully revisited.
Nevertheless, the possibility of writing down closed equa-
tions for correlations of any order could help in the under-
standing of intermittency in a more general cases. Unfortu-
nately, we do not see how to implement in our model the
kind of perturbation expansion done in R€fs, 9]. The main We would like to express our gratitude to M. Vergassola
difficulty is the lack of long-range interactions in our model for many stimulating and interesting discussions. We have
which forbids a proper definition of an eddy diffusivity in the also benefited from extensive discussions with R. Benzi, U.
limit £é—0. Some long-range shell models should be intro-Frisch, and A. Noullez. This work was supported by the
duced and studied if one wants to follow this path. On theFrench Minisiee de la Recherche et de la Technologie, by
other hand, our result for the anomalous correction of fourththe European Union (Human Capital and Mobility
order structure function becomes more and more nonpertuERBCHRXCT92000}, and by the GDR Meanique des Flu-
bative in the limit £-0, in qualitative agreement with the ides Numeique. L.B. would like to acknowledge partial sup-
Kraichnan theory for passive scaldrs. port by Ministee de 'Enseignement Superieur et de la Re-
Another interesting problem is to find the simplestcherche(France, and the Observatoire de la ®od’ Azur
passive-scalar shell model which has inertial-range intermitwhere this work was completed.
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APPENDIX A: EULER SCHEME

The weak-order-one Euler schelfléb]| associated with the passive-scalar shell model in its Ito fe¥nreads

O t={1+[(ambm+ 1+ bmCm—2)Dm— 1AL+ (— 8mCrm— 1+ b 2Cm) D 1AL+ @ 10D pAt
- am+ 1CmD m+2At_ Kkﬁ‘lAt]} Gnm-i- | [am( enm*+ 1am_lA nm*_l_ ﬁnm*_lam+ 1Aan*+ l)
+ b O 1@m-2AWRE o+ O sem—1AWR 1)+ Cn( O ptm s iAW 1+ 00 g i dAWRY ) T+ T S sAWE
(A1)

Here

AW = JAt7", (A2)

where the ), are independent identically distributed complex random variables of the &otib, wherea and b are
independent Bernoulli variables with valuesl/v2. The Bernoulli variables are numerically generated by a linear feedback
shift register random number generafsee, e.9.[27]).

The choice of Bernoulli variables rather than Gaussian variables is particularly convenient for numerical purposes. It
ensures that averaged quantities such as moments are correct to first akderiohoice consistent with the scheme.

APPENDIX B: MOMENT EQUATIONS

Hereafter, we give the detailed form of the equation for the second-order mogrtd,,0y) and the fourth-order
momentP,,=( 6,6} 6,,6%):

En=+ (— 2Kkﬁ~|+Am,m)Em+Am,mszmf2+Am,m71Emfl_Am,m+lEm+1+ am,m+2Em+2+ Fm. (B1)
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P m=—[2k(K2+ kD) = Amm— AL+ (8- 1m+ S1—amt 84 1m+ S omT Sme1+ 8 m-2F 8ms1+ 8me 2 ALmlPrm
TAmm-2P m—2t Amm-1Pim-1t Amm+ 1P me 1t Amme2Pime2 T AL 2P om T AL - 1Pioam P AL 41 Priam
TAL+2P2mT 81 m2(Am m-2Pmm—2F Amm-1Pmm-11Amm+ 1Pmm+ 1t Amm+2Pmm+2)

+ (61 mEm+ 01 B+ 01md1 E1)F . (B2)

The following notation has been used:

Fi=3, (B3)

Fi=0VI#1, (B4)
Anm_2=2b%Dp 1, (B5)
Amm-1=2(a5Dm+1+b5Dm 2), (B6)
Amm+1=2(85Dm-1+CaDmy2), (B7)
Amm+2=2CDmi1, (B8)
Anm=—Am+zm— Am+1m— Am—1m— Am—2m- (B9)
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