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A shell-model version of Kraichnan’s@Phys. Rev. Lett.72, 1016 ~1994!# passive scalar problem is intro-
duced which is inspired by the model of Jensen, Paladin, and Vulpiani@Phys. Rev. A45, 7214~1992!#. As in
the original problem, the prescribed random velocity field is Gaussian andd correlated in time, and has a
power-law spectrum}km

2j, wherekm is the wave number. Deterministic differential equations for second- and
fourth-order moments are obtained and then solved numerically. The second-order structure function of the
passive scalar has normal scaling, while the fourth-order structure function has anomalous scaling. Forj5

2
3 the

anomalous scaling exponentszp are determined for structure functions up top516 by Monte Carlo simulations
of the random shell model, using a stochastic differential equation scheme, validated by comparison with the
results obtained for the second- and fourth-order structure functions.@S1063-651X~96!13510-8#

PACS number~s!: 47.27.2i

I. INTRODUCTION

A most striking property of a passive scalar quantity ad-
vected by a fully developed turbulent flow is its spatiotem-
poral intermittent behavior~see Ref.@1# for a recent review!.
The time evolution of the scalar fieldu is described by the
partial differential equation

] tu1~v•“ !u5kDu1 f , ~1!

wherev is the advecting velocity field,k is the molecular
diffusivity, and f is an external forcing.

Intermittency in passive scalars advected by highly cha-
otic flows is thought to be connected to the existence of
self-similar processes transferring fluctuations from large to
small scales.

Self-similarity is observed in the power-law behavior of
structure functionsS̃p(r ) in the inertial range; that is, mo-
ments ofu increments at scales where neither external forc-
ing nor molecular damping are acting

S̃p~r ![^uu~x!2u~x1r !up&;r zp. ~2!

The set of scaling exponentszp fully characterizes intermit-
tency. In particular, deviations from the dimensional~linear!
behaviorz2p5pz2 are evidence of a nontrivial scalar trans-
fer among scales, in analogy to the energy intermittent cas-
cade in turbulent flows~see Ref.@2# for a recent review on
this subject!.

Another important issue is connected to the questioned
universal character of scalar fluctuations in the inertial range.
Universality should be the consequence of local, or quasilo-
cal, interactions among scales, and it should be reflected in a
strong robustness of the scaling exponentszp against varia-
tion of forcing and/or dissipation mechanisms. This idea
dates back to the phenomenological work of Obukhov and
Corrsin @3#.

Statistics of the passive scalar must be strongly related to
the properties of the advecting velocity fields; therefore, the
only realistic case would be to study the ‘‘full problem’’
given by ~1! together with the corresponding Navier-Stokes

equations, in the limit of high Reynolds number, which de-
scribes the time evolution of a fully developed turbulent ve-
locity field.

Due to the lack of knowledge about the statistical proper-
ties of a fully developed turbulent flow the ‘‘full problem’’
cannot yet be attacked. Nevertheless, Eq.~1!, with a pre-
scribed velocity field of suitable statistical properties, could
be a good ‘‘training ground’’ for understanding general
mechanisms~if any! underlying the presence of anomalous
scaling in fluid dynamics.

Recently, much attention has been paid in this direction
by studying the intermittency properties of a passive scalar
advected by a velocity field which is Gaussian,d-correlated
in time, and which has self-similar spatial correlations. In
Refs.@4–11# the two-point velocity-field correlation function
was set to ^v i(x,t)v j (x8,t8)&5d(t2t8)Di j (x2x8), with
D(x)5D(0)2D̂(x). Here,D̂ is thed-dimensional velocity-
field structure function

D̂ i j ~x!5D0uxuj@~d211j!d i j2jxixj uxu22#, ~3!

where the scaling exponentj of the second-order velocity
structure function,j with 0,j,2, is a free parameter.
Higher-order velocity-field correlation functions are fixed by
the Gaussian assumption.

Such a choice is far from being realistic because of the
assumed fast-time decorrelation and Gaussianity. Therefore,
no quantitative agreement with the intermittent properties of
the ‘‘full problem’’ must be expected. Nevertheless, in Refs.
@4–7, 9, 10, 12# many interesting analytical and phenomeno-
logical results for this toy model have been obtained, giving
the impression that some additional new insight into the ‘‘in-
termittency problem’’ has been gained~see Ref.@13# for re-
lated results in a passive vector case!.

The big advantage of this toy model is that, due to thed
correlation in time, all equations for equal-timen-point cor-
relations are formally closed, that is, thenth-order correla-
tion depends only on lower-order correlations. This fact was
stressed by Kraichnan@4,14#, who gave closed expression for
S̃2(r ). In Ref. @4# a theory for all structure functions was
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proposed, and an explicit formula forzp given. The main
physical outcome was that all structure functions of order
greater than 2 have intermittency corrections, and that inter-
mittency is connected to some nontrivial matching between
advective and diffusive properties of the model. Indeed, for
structure functions of order greater than 2, it is no longer
possible to clearly separate the contributions from diffusion
and advection terms in the generation of anomalous scaling.

In Refs. @5, 7, 9# it was shown that intermittency of the
scalar structure functions is connected to properties of the
null space of the linear operators describing the inertial-scale
evolution of multipoint passive scalar moments. Moreover,
perturbative expressions of intermittency corrections, as a
function of the parameterj and as a function of the inverse
of the dimensionality of the system, were given@5,7,9#. In
both cases careful analysis of matching conditions at infrared
~IR! and ultraviolet~UV! scales must be taken into account.
Universality in the scaling exponents is still preserved, while
constants in front of the power laws acquire dependencies on
the forcing and on the passive scalar dissipation. How far all
these results can be freely extended to the ‘‘full problem’’ is
difficult to say. Certainly, the scaling exponents have a
strong quantitative dependence on the statistical properties of
the prescribed velocity field. Influence of a short but nonzero
correlation time was studied in Ref.@8# and found to be
important, while from a phenomenological point of view it is
difficult to say if the perturbation expansion of Ref.@5# can
be extended up to the valuej52

3 which mimics the spatial
energy spectrum of true turbulence.~Let us notice that, even
for j52

3, the assumedd correlation in time for the velocity
makes the classical Obukhov-Corrsin theory inapplicable to
the passive scalar two-point correlation function@14#.!

An important drawback of the Gaussiand-correlated toy
model is that numerical simulations seem even more difficult
than a direct numerical simulation of the ‘‘full problem.’’
This is because~1! is a stochastic differential equations
~SDE! the solution of which requires huge computer re-
sources, because of the massive use of random number gen-
erators and also because of the paramount difficulties in the
implementation of higher than first-order discretization
schemes@15#. The state of the art of SDE numerical simula-
tions is hardly compatible with the high spatial resolution
needed to study scaling properties of the solution of~1! with
a d-correlated in-time velocity field~see, however, Ref.@6#
for an attempt at overcoming these difficulties, albeit at the
price of introducing some anisotropy into the velocity field!.

In this spirit, we have tried to work with the simplest toy
model which has some connection to the physics of the ‘‘full
problem,’’ while at the same time aiming for something
more tractable analytically and/or numerically. We have thus
investigated the intermittency properties of a shell model for
a passive scalar advected by a prescribed stochastic velocity
field. Shell models~see Ref.@16# for a pedagogical introduc-
tion! have already been successful in helping to understand
many issues connected to fully developed turbulence@17–
22#.

The problem of defining a shell model for the advection
of a passive scalar by a deterministic and chaotic velocity
field has been already investigated in Ref.@23#. Here we are

going to present our numerical and analytical results ob-
tained in a weakly modified version of the shell model de-
fined in Ref.@23#, but using ad-correlated surrogate for the
advecting velocity field. The main drawback of our model is
that, following shell-model philosophy, it retains only
nearest- and next-nearest-neighbor interactions in the shell
index. Having only semilocal interaction in Fourier space
could be a problem for describing the physics of passive
fluctuations for those types of velocity-field correlations
which induce strong nonlocal effects. For example, simple
dimensional considerations tell us that the limit of very small
j should be dominated by strong nonlocal effects~which
leads to an ultraviolet divergence of the eddy diffusivity in
the limit j→0 @5#!. Therefore we do not expect that our shell
model could properly mimic the physics of the partial differ-
ential equation~PDE! ~1! in the range of parameters choice
0,j!1. We are quite confident that our model captures very
well the passive scalar physics forj5O~1!: that is, when
dominant interactions become more local in Fourier space, as
is the case for true turbulence@24#. The major advantage of
using a shell model is that, now, reliable numerical simula-
tions become feasible, allowing nonperturbative determina-
tions of scaling exponents up to high orders~in this paper we
present results up to order 16!. Furthermore, having reliable
numerical simulations should open the possibility of relaxing
some of the constraints put on the statistical properties of the
velocity field, thereby allowing investigation of increasingly
realistic problems.

We found that our shell model shares many properties
with the original SDE~1!. Among them, the most important
are that~i! the second-order structure function has normal
scaling, ~ii ! all structure functions of orders larger than 2
have anomalous corrections, and~iii ! there is a remarkable
coupling between both UV and IR scales with inertial terms
in the closed equation satisfied by fourth-order shell correla-
tions. This result suggests that the anomalous scaling is due
to nontrivial contributions of integral and diffusive scales on
the inertial-range properties. Moreover, we find that anoma-
lous behavior tends to vanish when approaching the laminar
regime,j52, for the advecting velocity field.

Even though we have not obtained an analytical expres-
sion for the anomalous scaling exponents, we are confident
that many useful insights can be obtained by further investi-
gation of the present model, or an even simpler one. For
example, it should be possible to define some exactly solv-
able models, where the shell-velocity correlations are chosen
such as to give exactly solvable~but nontrivial! linear opera-
tors describing the structure functions-inertial properties.

The paper is organized as follows: in Sec. II we introduce
the random passive scalar shell model, and we discuss some
problems connected with its stochastic differential equation
~SDE! formulation. In Sec. III we explicitly derive the closed
deterministic equations for second- and fourth-order mo-
ments, which are numerically solved in Sec. IV to obtain the
scaling exponents of second- and fourth-order structure func-
tions. Monte Carlo simulations of the SDE are presented in
Sec. V. Concluding remarks and suggestions for further
work are given in Sec. VI.

II. THE MODEL AND ITS STOCHASTIC DIFFERENTIAL
EQUATION FORMULATION

We recall the main features of the passive scalar shell
model of Ref.@23#. The model is defined in terms of a shell
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discretization of the Fourier space in a set of wave numbers
defined on a geometric progressionkn5k02

n. Passive incre-
ments at scaler n5k n

21 are described by a complex variable
un(t). The time evolution is obtained according to the fol-
lowing criteria: ~i! the linear term is a purely diffusive term
given by2kk n

2un ; ~ii ! the advection term is a combination
of the formknun8,un9; ~iii ! interacting shells are restricted to
nearest and next-nearest neighbors ofn; and ~iv! in the ab-
sence of forcing and damping the model conserves the vol-
ume in the phase space and the passive energyE5Snuunu

2.
Properties~i!, ~ii !, and ~iv! are also valid for the original
equation~1! in Fourier space, while property~iii ! is an as-
sumption of locality of interactions among modes, which is
rather well founded as long as the power-law spectra of the
passive scalarE(k);k2a has 1,a,3.

Our passive scalar shell model, inspired by Jensen, Pala-
din, and Vulpiani’s model@23#, is defined by the following
equations~m51,2,...!:

F ddt1kkm
2 Gum~ t !5 i $am@um11* ~ t !um21* ~ t !

2um21* ~ t !um11* ~ t !#

1bm@um21* ~ t !um22* ~ t !

1um22* ~ t !um21~ t !#

1cm@um12* ~ t !um11~ t !

1um11* ~ t !um12* ~ t !#%1dm1f ~ t !, ~4!

where the asterisk denotes complex conjugation and

km52m, am5
km
2
, bm52

km21

2
, cm5

km11

2
, ~5!

with u215u05u215u050 as boundary conditions. The
forcing termd1mf (t) acts only on the first shell. Note that
Eq. ~5! is one of possible choices for the parametersam , bm ,
and cm , ensuring the conservation of passive scalar energy
Smumum* and phase-space volume. In numerical implemen-
tations, the model is truncated to a finite number of shellsN
~here N519! with the additional boundary conditions
uN115uN125uN115uN1250.

Our model differs from that of Ref.@23# by the absence of
complex conjugation on two of theu factors in the right-
hand side of~4!. The reason for this change will become
clear below. Furthermore, in Ref.@23# the passive scalar
model ~4! was coupled to the Gledzer-Ohkitani-Yamada
~GOY! shell model@17–19# for the nonlinear dynamics of
the velocity variables. The GOY model displays multifractal
behavior for theun’s, and an interesting intermittent behav-
ior is also found for the passive scalar.

Our goal, as in Kraichnan’s work@4#, is to use anonin-
termittentvelocity field and then to find if the passive scalar
is nevertheless intermittent. For this, we assume that the ve-
locity variablesum( l ) and the forcing termf (t) are indepen-
dent complex Gaussian andd correlated and in time. Further-
more, as in Ref.@14#, we make a scaling assumption for the
spectrum of theum(t)’s, namely

,

^um~ t !um* ~ t8!&5d~ l2t8!Dm , ~6!

where

Dm5km
2j ~7!

will be called the velocity spectrum. Forf (t) we assume
^ f (t) f (t8)&5d(t2t8).

As long as the velocity variablesum(t) have a finite cor-
relation time, and hence, smooth sample paths, there is no
particular difficulty in giving a meaning to the set~4! of
random ordinary differential equations~ODE’s!. A well-
known difficulty arises with ODE’s havingd-correlated in-
time coefficients: the mathematical meaning of the equation
is ambiguous@15#. The physicist’s viewpoint, and thus our
own, is to define the solution of such ‘‘stochastic differential
equations’’ to be the limit, as the correlation time tends to
zero, of the solution of a random ODE with nonwhite~col-
ored! coefficients. In the mathematical literature on stochas-
tic differential equations this is called the Stratonovich ver-
sion of stochastic calculus@15#. When numerically solving a
SDE such as~4!, one cannot use standard numerical methods
which assumesmoothcoefficients. It would also be highly
impractical to use a smooth approximation of the coefficients
with a small correlation time, since this requires time steps
much smaller than the correlation time. Fortunately, there is
an alternative formulation of the SDE, the Ito version, which
overcomes this difficulty. The solutions of SDE’s are Mar-
kov diffusion process which can be characterized by their
diffusion and drift coefficients~also called Fokker-Planck
coefficients!. The so-called Ito equation@15# encodes this
information in a way which leads naturally to efficient nu-
merical schemes.

Let us briefly explain how this Ito equation is obtained.
For this it is better to work with an abstract form of the
starting equation~with the forcing term omitted!:

du

dt
5M0u1

1

e
M1S te2D u. ~8!

Here, M0 is a deterministic operator andM1 a random
Gaussian operator with a finite correlation time. Thee scal-
ing is chosen in such away that, fore→0, theM1 operator
becomesd correlated in time. Just as ordinary white noise
may be written as the derivative, in the sense of distributions,
of the Brownian motion process, we can write

lim
e→0

1

e
M1S te2D5

dW

dt
, ~9!

whereW~t! is an operator-valued Brownian motion. The Ito
SDE associated with~8! is

du5~M01D!u dt1dWu, ~10!

where

D5E
0

`

^M1~s!M1~0!&ds ~11!

is called the drift operator. The presence of the drift term in
Eq. ~10! is easily understood: a Neumann expansion ofu(t
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1dt)2u(t) in powers ofM1, starting from Eq.~8!, gives a
second-order term, which isO(dt2) for fixed e but becomes
Du dt when the limite→0 is taken. The drift term may also
be obtained by using the Ito formula@15# or Gaussian inte-
gration by parts~see, e.g., Ref.@2#, Sec. 4.1!. The termdWu
is called the diffusion term. Since Brownian motion has in-
dependent increments over nonoverlapping intervals, the op-
eratordW, which isO(Adt) and has zero mean, is indepen-

dent of the past and, thus, ofu. It follows that the diffusion
term has vanishing mean. Hence, the mean ofu satisfies

d^u&
dt

5~M01D!^u&. ~12!

The Ito SDE associated with~4! reads

dum~ t !5@~ambm111bmcm22!Dm211~2amcm211bm12cm!Dm111am21bmDm222am11cmDm122kkm
2 #um~ t !dt

1 i $am@um11* ~ t !am21dWm21* ~ t !2um21* ~ t !am11dWm11* ~ t !#1bm@um21* ~ t !am22dWm22* ~ t !

1um22* ~ t !am21dWm21~ t !#1cm@um12* ~ t !am11dWm11~ t !1um11* ~ t !am12dWm12* ~ t !#%1dm,1dWf~ t !. ~13!

Heream5km
j/2 andDm5a m

2 /2, and theWm(t)’s andWf(t)
are independent identically distributed complex-valued
Brownian motion functions, normalized in such a way that
^uWm(t)u

2&5^uWf(t)u
2&5t. It is noteworthy that the drift

term in Eq. ~13!, the top two lines on the right-hand side,
which involves the sum of the energies in the neighboring
and next-neighboring shells, may be viewed as an eddy-
diffusivity term. For Kraichnan’s original equation~1!, the
Ito equation approach has a scale-independent eddy diffusiv-
ity @26#. Here, it is proportional tokn

2 j̄ . The difference stems
from the absence, in the shell model, of direct interactions
between widely separated scales. We also observe that, if we
had used the original model of Ref.@23# with complex con-
jugates on all theu factors, the drift operator would involve
nondiagonal elements coupling different shells, a situation
we avoided. Indeed, the drift operator is the mean value of
all double stochastic integrals of the stochastic Taylor expan-
sion @15#. By Taylor expanding ~13! and using
E(* 0

t dW dW)50 and E(* 0
t dW* dW)5t/2, the nondiago-

nality of the drift operator in Ref.@23# is easily verified.

III. EQUATIONS FOR THE SECOND- AND
FOURTH-ORDER MOMENTS

In this and the following sections we are interested in the
scaling behavior of thepth-order structure functions:

^~umum* !p/2&}km
2zp , ~14!

where zp is called the scaling exponent of orderp. If
z2p5pz2 , the structure functions are said to have a normal
scaling. If r2p5pz22z2pÞ0, the scaling of the structure
function of order 2p is said to be anomalous.

It is well known that from a linear stochastic differential
equation with white-noise coefficients, it is possible to obtain
exact equations for moments of arbitrary order@14,6#. For
example, from the abstract equation~8! one derives the
closed equation for the first-order moment~12!. Higher-order
quantities such asu^u,u^u^u^u,. . . also satisfy linear sto-
chastic differential equations with white-noise coefficients,

from which closed equations can be obtained for^u^u&,
^u^u^u^u&, etc. Such equations may also be obtained by
use of Ito calculus@15#.

In the shell-model context the moment equations become
excessively cumbersome beyond order 4. We have obtained
closed equations for

Em[^umum* & and Plm5^u lu l* umum* &. ~15!

The general structure of these equations is as follows

Ėl5~22kkm
2 d l ,m1Al ,m!Em1Fl , ~16!

Ṗlm5@22k~kl
21km

2 !d l ,ndm, j1Blm,n j#Pnj1Glm . ~17!

The equations are written in explicit form in Appendix B.
Here we stress a few important properties. The forcingFm is
restricted only to the first shellm51. The matrixAl ,m is a
symmetric band diagonal with a bandwidth 5, and has the
following scaling law:

Al1s,m1s5ks
22jAl ,m . ~18!

Similarly,

Bl1s;m1s,n1s j1s5ks
22jBlm,n j . ~19!

Straightforward scaling arguments indicate that Eqs.~16!
and ~17! may possess steady-state solutions withnormal
scaling. Such solutions have

Em}km
22j5km

2z2 ~20!

and

Pmm}km
2z4, ~21!

with z452z2. In order to find what kind of scaling actually
holds, we now resort to numerical solutions of the moment
equations~16! and ~17!. Since these aredeterministicequa-
tions, they can be solved with high accuracy at relatively low
cost. This is not the case of the Monte Carlo strategy of Sec.
V which allows us, however, to tackle structure functions of
high orders.
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IV. CALCULATION OF SECOND- AND FOURTH-ORDER
STRUCTURE FUNCTIONS FROM THE MOMENT

EQUATIONS

For the numerical solution of Eqs.~16! and~17!, we used
a c19-shell truncation with values ofk chosen in such a way
that the diffusive cutoff is well within the available range of
shells. An exponential cutoff was put on the velocity spec-
trum for shells in the dissipation range. Without cutoff in the
velocity spectrum the passive-scalar spectrum has an alge-
braic tail@25#. The solutions were obtained by time marching
until the steady state is reached. Such a steady state is nec-
essarily stable. The scaling parameterj was varied in the
range 0.2<j<2.

We found that the second-order structure functionEm al-
ways displays normal scaling with

z2522j, ~22!

the same value as obtained by Kraichman@6#. To investigate
the nature of the scaling of the fourth-order structure func-
tion Pmm; we plotted it against the second-order structure
function, following the now standard, extended self-
similarity ~ESS! procedure@26#. This gave us the anomalous
part r452z22z4 of the scaling exponent, plotted in Fig. 1
againstj. It is clearly seen that the scaling is anomalous
~r4.0!, the anomaly is a decreasing function ofj and disap-
pears asj→2, the ‘‘laminar’’ limit as in Ref.@4#.

For small values ofj, interactions become more and more
nonlocal, and a higher number of shells would be needed to
have a sufficiently large inertial range.@The number of shells
in the ‘‘intermediate inertial-dissipation range,’’ in which the

local Reynolds number isO~1!, grows like 1/j.# Even though
our shell model has only local interactions, purely kinematic
effects introduce important long-range diffusive corrections
in the limit j→0. This is why we restricted our calculations
of r4 for j ranging from 0.2 to 2.0.

The fact that normal scaling is obtained for the second-
order structure function is not very surprising, this being ex-
actly the same situation as for Kraichnan’s original problem.
It is easily checked that the operatorA appearing in Eq.~16!
has equipartition solutions~Em is independent ofm! in its
null space, both for the full operator and itsN-shell trunca-
tion. Such equipartition solutions have no associated passive-
scalar energy flux, and cannot bring about anomalous scal-
ing.

Let us now consider the anomalous scaling for the fourth-
order structure functions which are connected to the proper-
ties of the operatorB[Blm,n j . The operatorB has again
equipartition solutions in its null space, which cannot cause
anomalous scaling. We have checked numerically that finite-
shell truncations ofB have no other eigenvectors in their null
space. This only superficially contradicts the interpretation of
anomalous scaling as arising from the zero modes of the
inertial operator describing the evolution of moments@9#. In
our case there are no anomalous zero modes of the operator
B, but still we see numerically a very clean intermittent be-
havior. Where does the observed anomaly come from? One
can imagine two interpretations. The first one rests on the
physical observation that the operatorB is naturally long
range: it mixes inertial scales with cutoffs at both the UV and
IR ends. Therefore, its inverse involves a nontrivial mixture
of contributions from very different scales. This mixture
could be the cause of anomalous scaling, thereby defeating

FIG. 1. Anomalous partr4 of the fourth-order structure function
exponent vs velocity scaling exponentj with error bars.

FIG. 2. Second-order~continuous line! and fourth-order~dashed
line! structure functions of the passive scalar calculated from the
moment equations, compared to direct numerical Monte Carlo
simulations~squares and circles!.
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naive~local! dimensional analysis. The second interpretation
is to imagine that quasizero modes~which would become
true zero modes in the limit of an infinite inertial range!
already dominate the inverse ofB. The two interpretations
are not in contradiction. Indeed, our truncated system, being
always influenced by UV and IR cutoffs, naturally takes into
account boundary conditions and therefore never shows true
zero modes. A similar scenario takes place in Ref.@5#, where
zero modes in the infinite-dimensional function space have
to be matched with IR and UV physical cutoffs. Let us fi-
nally remark that the analysis of the relevant eigenvectors in
the eigenspace of the operatorB is highly complicated due to
the fact that we are looking at the cone of positive functions,
which is not a linear space.

V. MONTE CARLO SIMULATIONS
FOR STRUCTURE FUNCTIONS

As we noted, the moment-equation strategy becomes im-
practical for determining structure functions beyond the
fourth order. We therefore resort to Monte Carlo simulations
of the stochastic shell model in its Ito version~13!. We used
the ‘‘weak-order-one Euler’’ scheme, the details of which
may be found in Appendix A. Roughly, this means interpret-
ing the Ito equation,~13! as a time-difference equation. This
scheme is of order 1~in the time stepDt! for averaged quan-
tities such as the structure functions. Averages are calculated
as time averages, assuming ergodicity~we checked that
changes in the seed of the random generator do not affect the
results!. Integrating over a large number of realizations is
thus equivalent to integrating over many large-eddy turnover
times.

First we validated our Monte Carlo simulation by com-
parison with the results for the second- and fourth-order
structure functions obtained from the moment equations in
the previous section. The comparison can be seen in Fig. 2.
The agreement of the Monte Carlo and moment-based calcu-
lations is comparable to the machine precision~single preci-
sion!. We mention that, in order to maximize the extent of
the inertial range and avoid an inertial-diffusive range with
algebraic falloff of the passive scalar spectrum@26#, we as-
sumed an exponential cutoff on the velocity spectrum.

In all calculations 19 shells were used, the molecular dif-
fusivity was varied between 2210 and 228 and the time step
between 2229 and 2225. In order to give an example of the
quality of the scaling, in Fig. 3 we show the log-log plot of
the fourth, sixth, and eighth structure functions versus the
second-order structure function. This is done by ESS in order
to improve the scaling.

Figure 4 shows the scaling exponentszp determined by
least-square fits using ESS up to orderp516 for j52

3. The
error bars are obtained from the least-square fits. In all the
calculations the inertial range included eight shells or more.
When halving the number of samples in our statistics, we
found that the values obtained remained well within the error
bars. The graph ofzp appears to be linear at values ofp
beyond 8, with a slope of about 0.29. We do not rule out that
the asymptotic linear trend is an artifact due to insufficient
statistics. We observe that thezp’s obtained with our Gauss-
ian d-correlated in-time velocity are less anomalous than
those reported in Ref.@23#, where the velocity was already
multifractal.

VI. CONCLUSIONS

We proposed and studied a shell model for a randomly
advected passive scalar. We suggest that anomalous scaling

FIG. 3. ESS plot of thepth-order structure function vs second-
order structure function~p54, 6, and 8! for j5

2
3. Only inertial-

range shells are shown. Lines are the best linear fits. Statistical
errors are of the order of symbol sizes.

FIG. 4. Scaling exponentszp normalized byz2 for structure
functions up to orderp516 ~circles! for j5

2
3. The straight line

represents normal scaling.
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of structure functions of order greater than 2 is connected to
nontrivial dependence of inertial-range properties on both
integral and diffusive scales. This is shown, for example, in
the closed equation for the fourth-order moments
^umum* u lu l* &, where inertial-range shell correlations depend
explicitly on correlations between distant shells withm! l .
The main advantage of our model is that reliable numerical
simulations become feasible. We numerically estimated
anomalous exponents for structure functions up to order 16,
and for various scaling exponentsj of the velocity field
~0.2<j<2!. Comparing our numerical results with those ob-
tained in a similar passive shell model@23#, but advected by
a multifractal velocity field, we find large quantitative differ-
ences. This is due to the obvious fact that theu statistics are
strongly correlated to the statistics of the advecting field.
Nevertheless, the possibility of writing down closed equa-
tions for correlations of any order could help in the under-
standing of intermittency in a more general cases. Unfortu-
nately, we do not see how to implement in our model the
kind of perturbation expansion done in Refs.@5, 9#. The main
difficulty is the lack of long-range interactions in our model
which forbids a proper definition of an eddy diffusivity in the
limit j→0. Some long-range shell models should be intro-
duced and studied if one wants to follow this path. On the
other hand, our result for the anomalous correction of fourth-
order structure function becomes more and more nonpertur-
bative in the limit j→0, in qualitative agreement with the
Kraichnan theory for passive scalars@4#.

Another interesting problem is to find the simplest
passive-scalar shell model which has inertial-range intermit-

tency. For example, it is easy to extract from Eq.~4! an even
simpler shell model, by retaining only terms with
um22* (t)um21(t) andum12* (t)um11(t) in the advecting part.
This model has the same properties as listed in Sec. I, and
some preliminary numerical results indicate that it has simi-
lar intermittency corrections.

Let us finally remark that, up to now, all existing work on
anomalies driven by a stochastic velocity field has been
rooted in some kind of analysis performed in thephysical
space. In contrast, our shell model exists only in a kind of
Fourier space. Understanding the anomalous scaling in our
shell model at a phenomenological level could help in devis-
ing a phenomenology of intermittency. For example, ideas
connected to the popular inertial-range cascade picture could
be usefully revisited.
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APPENDIX A: EULER SCHEME

The weak-order-one Euler scheme@15# associated with the passive-scalar shell model in its Ito form~4! reads

um
n115$11@~ambm111bmcm22!Dm21Dt1~2amcm211bm12cm!Dm11Dt1am21bmDm22Dt

2am11cmDm12Dt2kkm
2Dt#%um

n 1 i @am~um11
n* am21DWm21

n* 2um21
n* am11DWm11

n* !

1bm~um21
n* am22DWm22

n* 1um22
n* am21DWm21

n !1cm~um12
n* am11DWm11

n 1um11
n* am12DWm12

n* !#1 fdm,1DWf
n .

~A1!

Here

DWm
n 5ADthm

n , ~A2!

where thehm
n are independent identically distributed complex random variables of the forma1 ib, wherea and b are

independent Bernoulli variables with values61/&. The Bernoulli variables are numerically generated by a linear feedback
shift register random number generator~see, e.g.,@27#!.

The choice of Bernoulli variables rather than Gaussian variables is particularly convenient for numerical purposes. It
ensures that averaged quantities such as moments are correct to first order inDt, a choice consistent with the scheme.

APPENDIX B: MOMENT EQUATIONS

Hereafter, we give the detailed form of the equation for the second-order momentsEn[^0m0m* & and the fourth-order
momentPlm[^u lu l* umum* &:

Ėm51~22kkm
2 1Am,m!Em1Am,m22Em221Am,m21Em212Am,m11Em111am,m12Em121Fm , ~B1!
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Ṗl ,m52@2k~km
2 1kl

2!2Am,m2Al ,l1~d l21,m1d l22,m1d l11,m1d l12,m1d l ,m211d l ,m221d l ,m111d l ,m12!Al ,m#Pl ,m

1Am,m22Pl ,m221Am,m21Pl ,m211Am,m11Pl ,m111Am,m12Pl ,m121Al ,l22Pl22,m1Al ,l21Pl21,m1Al ,l11Pl11,m

1Al ,l12Pl12,m1d l ,m2~Am,m22Pm,m221Am,m21Pm,m211Am,m11Pm,m111Am,m12Pm,m12!

1~d1,mEm1d1,lEl1d1,md1,lE1!F1 . ~B2!

The following notation has been used:

F15
1
2 , ~B3!

Fl50; lÞ1, ~B4!

Am,m2252bm
2Dm21 , ~B5!

Am,m2152~am
2Dm111bm

2Dm22!, ~B6!

Am,m1152~am
2Dm211cm

2Dm12!, ~B7!

Am,m1252cm
2Dm11 , ~B8!

Am,m52Am12,m2Am11,m2Am21,m2Am22,m . ~B9!
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